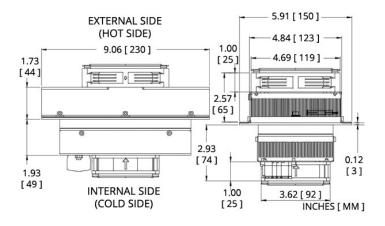


SuperCool X Series Thermoelectric Cooler Assembly

The SAAX-115-24-22 Air-to-Air thermoelectric cooler assembly is a high performance thermoelectric based air conditioner. It is designed to temperature control small chambers used in medical diagnostics or sample storage compartments in analytical instrumentation. This unique, **patented** design offers a high performance hot side heat dissipation mechanism that convects heat more efficiently than conventional heat exchanger technologies. The design utilizes custom next-generation high-performance thermoelectric modules to maximize cooling capacity and premium grade fans to reduce noise. Moisture resistant insulation is used to keep condensation from penetrating into the thermoelectric module cavity. This unit operates at 24 VDC and is designed for indoor lab use environment. It has a maximum Qc of 116 Watts when $\Delta T=0$ and a maximum ΔT of 41 °C at Qc = 0.

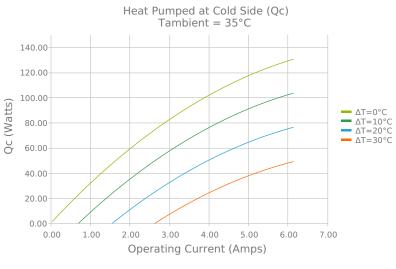
Pending U.S. Patent Publication No. US2020/0240717 Granted Patents:

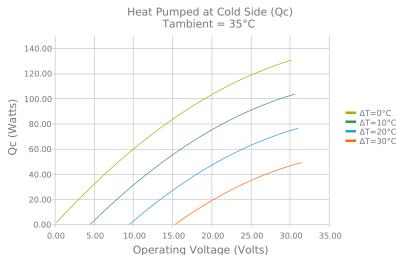
China: ZL2016800175855 Japan: 6549721 Switzerland: 3262909 Germany: 6020160449986 United Kingdom: 3262909



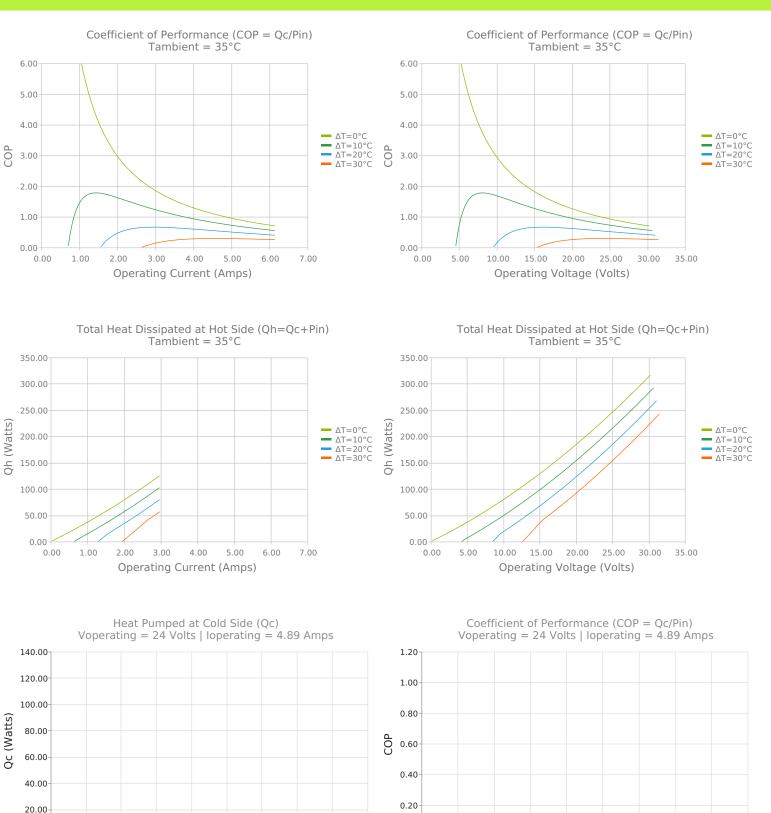
Features

- High performance
- Compact form factor
- Reliable solid-state operation
- RoHS-compliant


Applications


- Liquid Cooling Options for PET and SPECT Scanners
- Peltier Cooling for Refrigerated Centrifuges
- Heating and Cooling of Incubator Chambers
- Thermal Management Solutions for Beverage Cooling

Electrical and Thermal Performance


0.00

0.0

5.0

10.0

15.0

0.00

0.0

5.0

10.0

15.0

25.0

30.0

35.0

40.0

45.0

20.0

ΔT (°C)

25.0

ΔT (°C)

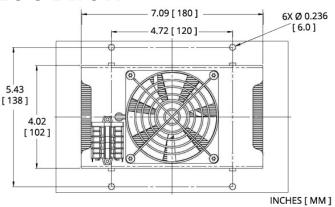
30.0

35.0

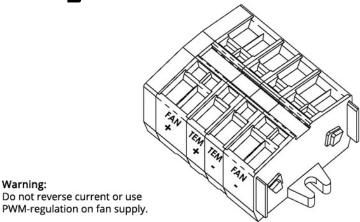
40.0

45.0

20.0



Specifications


Heat Transfer Mechanism, Cold Side	Air - Forced Convection
Heat Transfer Mechanism, Hot Side	Air - Forced Convection
Operating Temperature Range	-20°C to 60°C
Supply Voltage	24.0 VDC nominal / 30.0 VDC maximum
Current Draw	4.8 A running / 6.4 A startup
Power Supply	129.0 Watts
Performance Tolerance	10%
Hi-Pot Testing	750 VDC
Hot Side Fan MTBF	60000 hours
Cold Side Fan MTBF	70000 hours
Over-Temp Thermostat (Hot and Cold Side Heat Sink)	without thermostat
Weight	2.70 kg
Panel Mounting	Through

Mounting Hole Location

Wiring Schematic

Notes

¹For indoor use only

²Units are generally maintenance free, however occasionally it is recommended to clean the heat sinks and fans of debris. This is best done with compressed air.

Any information furnished by Tark Thermal Solutions and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Tark Thermal Solutions. All specifications are subject to change without notice. Tark Thermal Solutions assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Tark products are sold subject to the Tark Thermal Solutions Terms and Conditions of sale (including Tark's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

 $\ensuremath{\mathbb{C}}$ Copyright 2025 Tark Thermal Solutions, Inc. All rights reserved.

Revision: 01 Date: 08-28-2024

Print Date: 05-12-2025