培养箱的加热和制冷

简介

培养箱用于在医院和实验室环境下的细胞和组织培养,可在受控条件下培养和维持细胞或组织样本数小时、数周甚至数月。通过保持最佳的温度、湿度、二氧化碳和氧气水平,培养箱能够为细胞和组织样本的生长创造理想环境。对这些环境因素的精确控制使那些细胞培养至关重要的行业能够进行研究和实验工作,这些行业包括动物学、微生物学、药物研究、食品科学和化妆品等。

精准的温度控制对细胞生长尤其重要。如果高于和低于 37°C 的最佳哺乳动物体温,即使只有 6°C,也会对细胞健康产生负面影响。如果温度太低,生长就会减慢,有时甚至造成永久性影响;如果温度过高,敏感蛋白质就会开始变性。

使用热电技术替代基于压缩机的热管理解决方案可提供一种更高效、更具成本效益的选择。此外,世界各地政府对传统制冷剂的最新限制是基于压缩机制冷系统面临的核心问题,这使得热电技术成为一种更环保的培养箱温度控制解决方案。

培养箱要求

在培养箱中,必须要对温度、湿度、二氧化碳和氧气水平进行严格控制,才能进行适当的细胞培养。根据培养箱腔室尺寸,热负荷要求可以在 30~400W 以上的范围内。对于 CO2 培养箱,还必须保持 95%~98%的相对湿度水平和 0.3%~19.9%的指定 CO2 浓度。

 

Common Coolant Types and their Uses in Liquid Cooling Systems

Introduction

As power densities and thermal loads continue to increase in crowded electronic systems, and specific analytical and diagnostic testing processes demand more temperature stabilization for improved accuracy and results, more equipment designers, R&D labs and diagnostic laboratories are turning to liquid cooling solutions for better thermal management. Optimal cooling fluids improve accuracy of results, improve equipment performance, minimize downtime, reduce maintenance costs, ensure safety and can help meet environmental compliance.

Eco-Friendly Temperature Stabilization Solutions for OEMs’ Climate Action Goals

Introduction

At Laird Thermal Systems, we are committed to eco-friendly solutions for temperature stabilization for demanding applications across global medical, analytical, industrial, transportation, and telecommunications markets.

Older compressor-based systems often use high global-warming potential (GWP) HFC refrigerants like R134a and R404A. New industry requirements are moving away from the use of such refrigerants due to their environmental impact. New government restrictions on traditional and natural refrigerants are central to compressor-based systems.

Advanced Liquid Cooling for Rheometers

 

Introduction

Rheometers are scientific instruments used for studying the stress-strain relationship of polymers, fluids, and other soft materials to understand their flow/deformation properties. Rheometers are applied in a wide range of applications, such as in the development of new materials, quality control, and process optimization. Any rheometer that operates at elevated temperatures or measures temperature-dependent material properties requires a cooling system to maintain a precise temperature during testing.

用于小型光学图像感测应用的多级微型热电制冷器

引言

微型光学设备封装能够提供牢固的气密密封,用以保护CMOS、CCD、IR和X射线探测器等小型图像传感组件。TO CAN等光学封装广泛用于图像感测领域。对于高端图像感测,微型热电制冷器(TEC)可以集成到光学封装中,被称为光学热电组件(TEA)。可实现深度冷却,使温度达到远低于环境温度以下,以最大限度地减少热噪声并捕获最大光谱量。为了实现精确的温度控制,冷却图像传感器需要高度工程化的微型多级TEC。
 

应用挑战

微型光学TEA应用广泛,适合于热成像、高性能相机、气体探测器、光谱仪、边界安全、数字显微镜、计量学和国防等应用领域。对于这些类型的应用,光学TEA设计需要面对几个挑战,其中包括热管理、尺寸限制、光学机械稳定性、制造一致性和成本优化等。

用于下一代光模块的微型热电制冷器

引言

在数据通信和通讯行业,光纤技术已经基本上取代了铜线。包括人工智能和机器学习在内的许多新兴应用需要更高数据传输速率,并支持更远距离的带宽,而所有这些都需要以更低成本实现。在许多应用中,温度稳定性能够提高光纤系统中至关重要的关键光电元件性能和寿命。在本应用指南中,我们将讨论通讯应用中常见的半导体激光器,以及微型热电制冷器(TEC)如何为半导体激光器散热,以便优化系统的整体性能。

微型热电制冷器能够给半导体激光器散热,并优化系统整体性能

 

莱尔德热系统遵循SBTi认可排放目标,致力于可持续发展原则

2023年10月16日 – – 全球热管理解决方案领导厂商莱尔德热系统Laird Thermal Systems, 自豪地宣布, 基于科学碳目标倡议(SBTi, 正式批准了我们的温室气体减排目标,达到实现《巴黎协定》目标所需的水平。这一重大成就突显了莱尔德热系统对环境、社会和治理(ESG)原则以及负责任商业实践的坚定承诺。

SBTi的批准遵循了严格的评估过程,确认莱尔德热系统的可持续发展理念完全达到了SBTi的气候目标和最佳实践要求。涵盖温室气体排放公司运营的目标(scopes 1 和2)与到2030年将全球变暖限制在1.5℃所需的减排要求一致,这是《巴黎协定》中最雄心勃勃的目标。莱尔德热系统承诺到2030年将scopes 1 和2的温室气体排放量在2021基础上减少42%,并测量和减少scope 3的排放量。

莱尔德热系统的SBTi批准再一次证明了我们对企业社会责任和环境治理的持续奉献。通过SBTi的认可,莱尔德热系统进一步巩固了作为前瞻性行业领导者的地位,并不断致力于对地球环境做出更有意义的贡献。

Electronic Enclosure Cooling Thermoelectric vs. Compressor-Based Air Conditioners

Introduction

Air conditioners utilizing thermoelectric coolers are often considered as an alternative to conventional vapor-compression systems for enclosure cooling. Because a thermoelectric cooler is compact, robust, and completely solid-state, the inherent reliability of such a system is attractive to engineers and end-users alike. However, there is an inherent reluctance to choose a thermoelectric-based system due to preconceptions about energy efficiency or lack of experience with thermoelectrics.

Cooling Particle Accelerators: Linear Accelerators and Cyclotrons

Introduction

Particle accelerators, such as linear accelerator (LINAC) and cyclotron systems, increase the kinetic energy of particles for use in a variety of applications, ranging from scientific studies on particle physics to radiation therapy for cancer patients. Particle accelerators, like most sensitive medical and laboratory equipment, are negatively affected by thermal variations, specifically an increase in heat. Temperature control of vital particle accelerator system components is critical for operational integrity, performance accuracy and system reliability.

Clone of Thank You

Thank you for contacting Laird Thermal Systems. Our team will respond to your request shortly.

If you require immediate assistance please contact one of our global Sales and Support Centers.

Asia / Pacific: +86 755 3698 8333 ext. 218
Americas: +1 919-597-7300
EMEA (DE): +49 8031 6192887
EMEA (SE): +46 31 7046757
EMEA (CZ): +420 488 575 111